the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet
Explanation:
In this problem we are analzying the gravitational force acting between a planet and its moon.
The magnitude of the gravitational attraction between two objects is given by
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, we are considering a planet and its moon. According to Newton's third law of motion,
"When an object A exerts a force (action force) on an object B, then object B exerts an equal and opposite force (reaction force) on object A"
If we apply this law to this situation, this means that the force that the planet exerts on the moon is equal to the force that the moon exerts on the planet.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Your gas mileage would be 22.93 miles per gallon.
Answer:
B) they show which way iron shavings would align themselves
Explanation:
Let's analyze each statement:
A) they are not affected by their own source --> this is true for both magnetic and electric fields. In fact, both fields are produced (and so affected) by a source (a magnet or a current in the magnetic field case, and an electric charge in the electric field case)
B) they show which way iron shavings would align themselves --> this is only true for the magnetic field. In fact, the pieces of iron will align according to the magnetic field; however, since they are electrically neutral, they are not affected at all by an electric field.
C) they re stronger near the source and get weaker farther away --> true for both magnetic and electric fields.
D) the closer the fields lines, the stronger the fields --> also true for both magnetic and electric fields.
So, the correct answer is B.
Answer:
9.6609 rad/s
10.143945 m/s
Explanation:
I = Moment of inertia = 3.75 kgm²
K = Kinetic energy = 175 J
r = Radius = 1.05 m
Kinetic energy is given by

The angular velocity of the leg is 9.6609 rad/s
Velocity is given by

The velocity of the tip of the punters shoe is 10.143945 m/s