Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

Answer:
Sarah is right
Explanation:
This is an exercise that differentiates between scalars and vectors.
A scalar is a number, instead a vector is a number that represents the module in addition to direction and sense.
In this case, the distance (scalar) traveled is a number, which is why it is worth 1500m, but the displacement is a vector and since the point where it leaves is the same point where the vector's modulus arrives is zero, so the DISPLACEMENT VECTOR is zero
consequently Sarah is right
Answer:
it increases the amplitude of the wave as it propagates.
Explanation:
Answer: Scientists found evidence of Earths magnetic field reversal in rocks on the ocean floor at plate boundaries. These rocks have alternating polarity due to magnetization that occurred during their cooling period. Using radio metric dating, scientist estimate that reversals occur approximately every several hundred thousand years.
Explanation: