Answer:
The momentum of the ball is 500 kg·m/s
Explanation:
The momentum is given by Mass × Velocity
The given parameters are;
The mass of the box = 10 kg
The velocity by which the box is sliding = 50 m/s
Therefore, the momentum of the ball is given as follows;
The momentum of the ball = 10 kg × 50 m/s = 500 kg·m/s
The momentum of the ball = 500 kg·m/s
Answer:
Well, I think you're talking about kinematics, especially uniform rectilinear motion. We know that there is a specific equation for that:
S = Vt + S0
With S being the distance, V the velocity, t the time and S0 the initial distance (initial displacement).
From this you can calculate t, if that's what you want.
Answer:
<em><u>M</u></em><em><u>a</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:</u></em>
That will be
<em>=</em><em> </em><em>1</em><em>5</em><em>0</em><em>0</em><em> </em><em>x</em><em> </em><em>1</em><em>5</em><em> </em><em>x</em><em> </em><em>4</em><em>5</em><em>0</em><em>0</em>
<em>=</em><em> </em><em><u>1</u></em><em><u>0</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em>
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
1) 15 / 12 = 1.25 ratio
2) to increase acceleration 1.25 times (with same F, or same engine) you have to lower mass 1.25 times
3) 1515/1.25 = 1212 kg
choose A