Answer: 30 m/s
Explanation:
Use the first kinematic equation for linear motion

Equation for Half life :
A = a(0.5)^(t/h)
A is current amount, "a" is initial amount, h is halflife, t is time
5 = 40(0.5)^(t/1.3x10^9)
5/40 = (0.5)^(t/1.3x10^9)
take the log of both sides , power rule
Log(5/40) = (t/1.3x10^9) * Log(0.5)
(1.3x10^9) * Log(5/40) / Log(0.5) = t
3.9x10^9 years = t
And if you think about what a half life is, the time it take for the amount to reduce to half.
40/2 = 20
20/2 = 10
10/2 = 5
It went through 3 half-lifes
3 * 1.3x10^9 = 3.9x10^9 years
D
Molecules consist of multiple atoms put together to create a new form.
Answer:
a)<em> Balanced equation:</em>
An equation is called balanced if there are same number and same type of atom on both sides of the equation.
b)<em>Reason:</em>
2KClO3--------2KCl + 3O2
Consider this equation in the reactants there are 2KClO3 and in the product there are 2KCl+3O2 . So reactants =products which is a case of balanced chemical equation .
Explanation:
Answer:
see below
Explanation:
1. Predicting products (double replacement): ab + cd ---> ad + cb
KNO₃(aq) + Fe(OH)₃(s)
2. balance the equation
3KOH (aq) + Fe(NO3)₃ (aq) ---> 3KNO₃(aq) + Fe(OH)₃(s)
3. I don't know if you need this but ionic equation: only aqueous things get split into ions; gas, liquid, and solids stay together
3K⁺(aq) + 3(OH)⁻(aq) + Fe³⁺(aq) + 3NO₃⁻(aq) ---> 3K ⁺(aq) + 3NO₃⁻(aq) + Fe(OH)₃(s)
removing things on both product and reactant side
3(OH)⁻(aq) + Fe³⁺(aq) --->Fe(OH)₃(s)