Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
Answer:
Technician A
Explanation:
This is because when the dimacations are made, the surface area and length respectively can be maintained to reduce to idea of force which may lead to damage
Answer:
A fluid is a substance [ <em>liquid</em><em> </em><em>and</em><em> </em><em>gas</em><em> </em><em>state</em><em> </em>] in which motion of another substance in it is opposed due to viscous drag [ <em>viscosity</em><em> </em>]
Explanation:

2.4 is the correct answer .
125 ÷ 52
Air supplied to a pneumatic system is supplied through the C. Actuator
Explanation
Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid. Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.
From the above statement it is clear that Air supplied to a pneumatic system is supplied through the Actuator