1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
4 years ago
10

Which statement best compares an asteroid with Earth?

Physics
2 answers:
Rina8888 [55]4 years ago
6 0

Answer:

c. both have rocky composition

Explanation:

Alla [95]4 years ago
4 0
Answer:

<span>C) Both have rocky composition 

Explanation

Earth has rocks. Many many rocks.

It is made of many type of rocks such as </span>sedimentary<span>, </span>metamorphic<span>, and </span><span>igneous rocks. and guess what a asteroid is? That is right ! A ROCK.
</span>A asteroid is normally made of  <span>stony silicate rocks , but not always , sometimes I can be diamonds!! The point is , they both are rocks floating around space.</span><span>

</span>
You might be interested in
What relation does the boiling point of an amine have to a similar hydrocarbon?
den301095 [7]

Answer:

Amine have higher boiling points than hydrocarbons.

Explanation:

Primary, secondary and tertiary amines have higher boiling points than hydrocarbons because they can engage in intermolecular hydrogen bonding.

Amines has three classes

1. Primary amines

2. Secondary amines

3. Tertiary amines

All this classes of amines have higher boiling point than hydrocarbons due to C-N bond in them

This is because amines can engage in hydrogen bonding with water, amines of low molar mass are quite soluble in water.

Amines are having higher boiling points than hydrocarbons, as C-N bond in amines is more polar than a C-C bond in hydrocarbons. Due to the polar nature of amines, it forms intermolecular H-bonds and exists as associated molecules.

5 0
3 years ago
Read 2 more answers
Speed is a component of skill related fitness. what does speed enable you to do
AveGali [126]
To complete a task in a short amount of time/get from A to B in the quickest amount of time

Hope helps!
7 0
3 years ago
The 45-g arrow is launched so that it hits and embeds in a 1.40 kg block. The block hangs from strings. After the arrow joins th
worty [1.4K]

Question: How fast was the arrow moving before it joined the block?

Answer:

The arrow was moving at 15.9 m/s.

Explanation:

The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

\dfrac{1}{2}m_av^2 = (m_b+m_a)\Delta Hg

where m_a is the mass of the arrow, m_b is the mass of the block, \Delta H of the change in height of the block after the collision, and v is the velocity of the arrow before it hit the block.

Solving for the velocity v, we get:

$v = \sqrt{\frac{2(m_b+m_a)\Delta Hg}{m_a} } $

and we put in the numerical values

m_a = 0.045kg,

m_b = 1.40kg,

\Delta H = 0.4m,

g= 9.8m/s^2

and simplify to get:

\boxed{ v= 15.9m/s}

The arrow was moving at 15.9 m/s

6 0
3 years ago
A thin uniform rod (length = 1.2 m, mass = 2.0 kg) is pivoted about a horizontal, frictionless pin through one end of the rod. (
Anika [276]

Answer:

a=9.8 rad/s^{2}

Explanation:

Torque, \tau is given by

\tau=Fr where F is force and r is perpendicular distance

R=0.5Lcos\theta where \theta is the angle of inclination

Torque, \tau can also be found by

\tau=Ia where I is moment of inertia and a is angular acceleration

Therefore, Fr=Ia and F=mg where m is mass and g is acceleration due to gravity

Making a the subject, a=\frac {Fr}{I}=\frac {mgr}{I} and already I is given as  

I=\frac {mL^{2}}{3} and r is 0.5Lcos\theta hence  

a=\frac {0.5mgLcos\theta}{1/3 mL^{2}}

a=\frac {3gcos\theta}{2L}

Taking g as 9.81, \theta is given as 37 and L is 1.2

a=\frac {3*9.81cos37}{2*1.2}=9.7932679419

a=9.8 rad/s^{2}

4 0
3 years ago
A transverse wave on a long horizontal rope with a
frosja888 [35]

Answer:

2 seconds

Explanation:

The frequency of a wave is related to its wavelength and  speed by the equation

f=\frac{v}{\lambda}

where

f is the frequency

v is the speed of the wave

\lambda is the wavelength

For the wave in this problem,

v = 2 m/s

\lambda=8 m

So the frequency is

f=\frac{2}{8}=0.25 Hz

The period of a wave is equal to the reciprocal of the frequency, so for this wave:

T=\frac{1}{f}=\frac{1}{0.25}=4 s

This means that the wave takes 4 seconds to complete one full cycle.

Therefore, the time taken for the wave to go from a point with displacement +A to a point with displacement -A is half the period, therefore for this wave:

t=\frac{T}{2}=\frac{4}{2}=2 s

4 0
3 years ago
Other questions:
  • In a container of negligible heat capacity, mix 6kg of ice at -40 ° C with 3kg of steam at 120 ° C, determine the equilibrium te
    5·1 answer
  • What effect does time have on the speed of a moving object
    5·1 answer
  • Your neighbor’s 14-month-old toddler says things like "cup!" when he means that he would like a cup of milk. Your neighbor think
    8·1 answer
  • What rocket color code represents the rocket motor?
    15·1 answer
  • How does electromagnetic affect people in the world ?
    13·1 answer
  • Find the force of gravity between a cubic meter of water (1000kg) and the Sun. The Sun's mass is 1.99 x10^30 kg and is 1.50 x10^
    15·1 answer
  • What is the matter made of
    12·1 answer
  • Which layer is the igneous rock type?
    7·2 answers
  • Sample Response: Yes, his graph is correct because it shows that as the average kinetic energy increases, so does the temperatur
    12·1 answer
  • Using the thermodynamic information in the aleks data tab, calculate the standard reaction free energy of the following chemical
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!