Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )


The weight of an object is taken to be the force on the object due to gravity. The weight ( W ) is the product of the mass ( m ) of the object and the magnitude of the gravitational acceleration ( g ).
On Earth: g = 9.81 m/s²
m = 20 kg
W = m · g = 20 kg · 9.81 m/s² = 196.2 N
Answer:
His final velocity is 15.8 m/s.
Step-by-step explanation:
Given:
Initial velocity of the driver is,
m/s
Acceleration of the driver is,
m/s²
Time taken to reach final velocity is,
s.
The final velocity is given using the Newton's equations of motion as:
, where,
is the final velocity.
Now, plug in the given values and solve for
.

Therefore, his final velocity is 15.8 m/s.
Answer:
Autotrophs
Explanation:
When you go down a food chain continuing to ask "what does it eat?" the last living thing that you will land upon is an autotroph.
Autotrophs are the primary producers as they (photoautotrophs) use the energy either from the sun to prepare there food by the process of photosynthesis or, more rarely, obtain chemical energy through oxidation (chemoautotrophs) to make organic substances from inorganic ones.
Autotrophs get consumed by the primary consumers in the food chain.
Atmosphere - gas
sea and oceans - liquid and solid
land -liquid and solid
living things and plants - liquid