Explanation:
As
is a covalent compound because it is made up by the combination of two non-metal atoms. Atomic number of an iodine atom is 53 and it contains 7 valence electrons as it belongs to group 17 of the periodic table.
Therefore, sharing of electrons will take place when two iodine atoms chemically combine with each other leading to the formation of a covalent bonding.
Hence, weak forces like london dispersion forces will be present between a molecule of
.
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
thus, we can conclude that london dispersion force is the major attractive force that exists among different
molecules in the solid.
Answer:
The work done by the gas expansion is 5875 J,
Since the work done is positive, the work is done by the gas on the surroundings.
Explanation:
Given;
change in internal energy, ΔU = -4750 J
heat transferred to the system, Q = 1125 J
The change in internal energy is given by;
ΔU = Q - W
Where;
W is the work done by the system
The work done by the system is calculated as;
W = Q - ΔU
W = 1125 - (-4750)
W = 1125 + 4750
W = 5875 J
Since the work done is positive, the work is done by the gas on the surroundings (energy flows from the gas to the surroundings).
Therefore, the work done by the gas expansion is 5875 J
Are you asking for a specific atom or just the general definition?
The general definition of alpha decay is the loss of two protons and two neutrons from a nucleus. (Also equal to a helium atom!) This decreases the total mass number by 4 and the atomic number by 2.
Answer:
Assuming it was collected from the atmosphere it would be virtually nothing
Explanation:
hydrogen makes up 0.000055% of the atmosphere while oxygen makes up 23 percent. 20/400000 cm^3 of hydrogen