1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
3 years ago
11

Which of these substances would rise to the top if placed in a container with the rest?

Physics
1 answer:
Vladimir [108]3 years ago
4 0
What substances? Depends on their density, the lower density floats on top. For example, oil floats on top of water
You might be interested in
As the spaceship travels upward in the sky, some of its kinetic energy will be lost to the universe due to ?
GaryK [48]

Answer:

Friction !!!

Explanation:

6 0
3 years ago
Molds survive best in <br> A) warm, most<br> B) dry, cold <br> C) bright, sunny<br> places
lana66690 [7]
A..........................................
3 0
3 years ago
Read 2 more answers
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
1 year ago
A plane traveling horizontally at 120 ​m/s over flat ground at an elevation of 3610 m must drop an emergency packet on a target
allsm [11]

Answer:

Explanation:

Horizontal displacement

x = 120 t

Vertical position

y = 3610 - 4.9 t²

y = 0 for the ground

0 = 3610 - 4.9 t²

t = 27.14 s

This is the time it will take to reach the ground .

During this period , horizontal displacement

x = 120 x 27.14 m

= 3256.8 m

So packet should be released 3256.8 m before the target.

3 0
3 years ago
Read 2 more answers
(a) What is the current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine? (b) How
OLEGan [10]

Answer:

(a) Current flowing through truck battery is 180 A

(b) Time taken in calculator is 333.33 s

Explanation:

(a) Given:

The charge on the truck battery,q = 720 C

Time, t = 4.00 s

Consider I be the current flowing through truck battery.

The relation between current, charge and time is:

I = q/t

Substitute the suitable values in the above equation.

I=\frac{720}{4}

I = 180 A

(b) Given:

The charge on the calculator,q = 7.00 C

The current flowing through calculator, I = 0.3 mA = 0.3 x 10⁻³ A

Consider t be the time.

The relation between current, charge and time is:

t = q/I

Substitute the suitable values in the above equation.

t=\frac{1}{0.3\times10^{-3} }

I = 333.33 s

8 0
3 years ago
Other questions:
  • On the Moon, the acceleration due to the effect of gravity is only about 1/6 of that on Earth. An astronaut whose weight on Eart
    15·2 answers
  • Which class of hard hats does not protect you from electrical shock?
    5·2 answers
  • Forms when heat, pressure, or fluids act on igneous, sedimentary, or other metamorphic rock to change its form or composition, o
    13·1 answer
  • What are 7 elements from the periodic table that are named after objects in outer space
    5·1 answer
  • The electromagnetic waves with the most energy have the greatest
    8·2 answers
  • An air bubble at the bottom of a lake 52.0 m deep has a volume of 1.50m^3. If the temperature at the bottom is 5.5 degree's Cels
    15·1 answer
  • Moon A has a mass of 3M and a radius of 2R. Moon B has a mass of 4M and a radius of R. What is the ratio of the force of gravita
    6·1 answer
  • If you run at 1.7 m/s FORWARD ,how does this affect the speed of a ball that you throw?
    8·1 answer
  • The summit of Mount Everest is 8848.0 m above sea level, making it the highest summit on Earth. In 1953, Edmund Hillary was the
    8·1 answer
  • If every one-point change in the federal funds rate alters aggregate demand by $200 billion, how far did AD shift in response to
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!