Answer:
Chemical indicator, any substance that gives a visible sign, usually by a color change, of the presence or absence of a threshold concentration of a chemical species, such as an acid or an alkali in a solution. An example is the substance called methyl yellow, which imparts a yellow color to an alkaline solution.
Answer:
v = 46.5 m/s
Explanation:
Given data:
Mass of car = 1210 kg
Momentum of car = 56250 kg m/s
Velocity of car = ?
Solution:
Formula:
p = mv
p = momentum
m = mass
v = velocity
Now we will put values in formula:
56250 kg m/s = 1210 kg × v
v = 56250 kg m/s / 1210 kg
v = 46.5 m/s
So a car having mass of 1210 kg with momentum 56250 kg m/s having 46.5 m/s velocity.
Answer:
There is a mass of 154 Grams of Carbon Dioxide.
Explanation:
One mole is equal to 6.02 × 10^23 particles.
This means we have 1.05 X 10^24 total particles of Ethane.
Each ethane particle contains 2 carbon atoms.
If every particle of ethane is burned, we will end up with 2.10 x 10^24 molecules of Carbon Dioxide (Particles of Methane x 2, since each Methane particle contains 2 carbon atoms)
Carbon Dioxide has a molar mass of 44.01 g/mol
So if we take our amount of Carbon Dioxide molecules and divide it by 1 mole, ((2.10 x 10^24)/(6.02 x 10^23) = 3.49) we find that we have 3.49 moles of Carbon Dioxide.
Now all we need to do is multiply our moles of carbon dioxide(3.49) by it's molar mass(44.01) while accounting for significant digits.
What you should end up with is 154 Grams of Carbon Dioxide.
Hope this helps (And more importantly I hope I didn't make any errors in my math lol)
As a side note this is all assuming that this takes place at STP conditions.
Answer:
See explanation
Explanation:
The essence of chemical bonding is in order to attain minimum energy. The minimum energy state is the most stable state of a chemical system.
As the distance of separation between atoms decreases, the potential energy of the system decreases accordingly.
An optimum distance is reached when the two atoms attain the lowest potential energy. This is designated as the bond distance of the two atoms.
Hence two atoms have lower potential energy when bonded than when separated at large distance.