1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
15

A compact disc (CD) stores music in a coded pattern of tiny pits 10−7m deep. The pits are arranged in a track that spirals outwa

rd toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. Part A What is the angular speed of the CD when scanning the innermost part of the track? B What is the angular speed of the CD when scanning the outermost part of the track? C The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line? D What is the average angular acceleration of a maximum-duration CD during its 74.0-min playing time? Take the direction of rotation of the disc to be positive.
Physics
2 answers:
andreev551 [17]3 years ago
5 0

(a) 50 rad/s

The angular speed of the CD is related to the linear speed by:

\omega=\frac{v}{r}

where

\omega is the angular speed

v is the linear speed

r is the distance from the centre of the CD

When scanning the innermost part of the track, we have

v = 1.25 m/s

r = 25.0 mm = 0.025 m

Therefore, the angular speed is

\omega=\frac{1.25 m/s}{0.025 m}=50 rad/s

(b) 21.6 rad/s

As in part a, the angular speed of the CD is given by

\omega=\frac{v}{r}

When scanning the outermost part of the track, we have

v = 1.25 m/s

r = 58.0 mm = 0.058 m

Therefore, the angular speed is

\omega=\frac{1.25 m/s}{0.058 m}=21.6 rad/s

(c) 5550 m

The maximum playing time of the CD is

t =74.0 min \cdot 60 s/min = 4,440 s

And we know that the linear speed of the track is

v = 1.25 m/s

If the track were stretched out in a straight line, then we would have a uniform motion, therefore the total length of the track would be:

d=vt=(1.25 m/s)(4,440 s)=5,550 m

(d) -6.4\cdot 10^{-3} rad/s^2

The angular acceleration of the CD is given by

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f = 21.6 rad/s is the final angular speed (when the CD is scanned at the outermost part)

\omega_i = 50.0 rad/s is the initial angular speed (when the CD is scanned at the innermost part)

t=4440 s is the time elapsed

Substituting into the equation, we find

\alpha=\frac{21.6 rad/s-50.0 rad/s}{4440 s}=-6.4\cdot 10^{-3} rad/s^2

EleoNora [17]3 years ago
3 0

Answer:  (a) 50 rad/s, (b) 21.6 rad/s, (c) 5550 m, (d) -6.4\cdot 10^{-3} rad/s^2

<h3>Explanation: </h3>

A compact disc (CD) stores music in a coded pattern of tiny pits 10−7m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s

Part

A What is the angular speed of the CD when scanning the innermost part of the track?

B What is the angular speed of the CD when scanning the outermost part of the track?

C The maximum playing time of a CD is 74.0 min. What would be the length of the track on such a maximum-duration CD if it were stretched out in a straight line?

D What is the average angular acceleration of a maximum-duration CD during its 74.0-min playing time?

(a) 50 rad/s

\omega=\frac{v}{r}

where

\omega is the angular speed

v is the linear speed,  v = 1.25 m/s

r is the distance from the centre of the CD, r = 25.0 mm = 0.025 m

Therefore, the angular speed

\omega=\frac{1.25 m/s}{0.025 m}=50 rad/s

(b) 21.6 rad/s

The angular speed of the CD is

\omega=\frac{v}{r}

When scanning the outermost part of the track

v = 1.25 m/s

r = 58.0 mm = 0.058 m

Therefore, the angular speed is

\omega=\frac{1.25 m/s}{0.058 m}=21.6 rad/s

(c) 5550 m

t =74.0 min \cdot 60 s/min = 4,440 s

the linear speed of the track is  v = 1.25 m/s

the total length of the track would be:

d=vt=(1.25 m/s)(4,440 s)=5,550 m

(d) -6.4\cdot 10^{-3} rad/s^2

The angular acceleration of the CD is given by\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f = 21.6 rad/s is the final angular speed (when the CD is scanned at the outermost part)

\omega_i = 50.0 rad/s is the initial angular speed (when the CD is scanned at the innermost part)

t=4440 s is the time elapsed

Substituting into the equation, we find

\alpha=\frac{21.6 rad/s-50.0 rad/s}{4440 s}=-6.4\cdot 10^{-3} rad/s^2

Learn more about   the angular speed brainly.com/question/5813257

#LearnWithBrainly

You might be interested in
Yes this nees helppppppppppppppp
kozerog [31]

Answer:

lol

Explanation:

it was funny

6 0
3 years ago
A solid cylinder is released from the top of an inclined plane of height 0.81 m. From what height, in meters, on the incline sho
Jlenok [28]

Answer:

same 0.81m

Explanation:

in this problem if we assume there no resistance of any sort. and we apply the energy conservation

change in Potential energy = change in kinetic energy

mgh = 0.5mv^2

gh = 0.5v^2

the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.

so at the bottom

put h = 0.81m

9.81 * 0.81 * 2 = v^2

v=3.99 m/s

both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size

3 0
3 years ago
While on vacation, a student picks up surface rocks from around the world to add to her rock collection. The composition of her
kykrilka [37]
I want to say that they will be primarily flat but I honestly don't know
7 0
3 years ago
Johnson made a hole at the bottom of a plastic bottle containing water. However, he noticed that the water did not flow out from
Sphinxa [80]

Answer:

  • a) See explanation below

  • b) At X.

Explanation:

Please, see the picture attached with the image of the plastic bottle for this question.

<u>(a) Explain why the water could not flow out of the bottle.</u>

What makes the water flow out of the botlle is the force of gravity, whic attracts the water towards the Earth.

When Johnson made a small hole at the bottom of the plastic bottle containing water, the air outside the bottle, which surrounds it and exerts a pressure all over the outer walls of the bottle, exerted a force against the small area of water "over" the hole that is in contact with the air.

Thus, this force of the air pushing upward through the wall opposed the force of gravity pulling downward making the net force zero and the water cannot fall.

<u>(b) To make the water flow out more easily, his teacher suggested making another hole. At which position - X, Y or Z, should he make the 2nd hole in order for the water to flow out the fastest?</u>

You must open the hole at a place where there is not water but air, such that the outer air can enter in the bottle.

That will make that the pressure in the space over the water inside the bottle be equal to the pressure outside.

The pressure of the air above the water will push it downward. Now, the force from the pressure of air inside the water, which is downward, opposes the upward force from the pressure of air around the first hole, and the net force will be downward, making the water flow out more easily.

Thus, the position where he should make the second hole in order for the water to flow fastest is at X.

4 0
3 years ago
Help me with this review question please.
QveST [7]

Answer:

K E=( mv²)/2

=(60×3.5²)/2

=367.5J

6 0
2 years ago
Other questions:
  • A puppy weighing 3 kilograms races through the dog park. if she slows from a speed of 2 meters/second to 1 meter/second, what wi
    10·2 answers
  • Your neighbor is riding her bike around the block. When she slows down and turns a corner, what changes about her?
    10·2 answers
  • Gold has a density of 19.32 g/cm3. what is the volume of a sample of gold with a mass of 27.63 grams?
    13·1 answer
  • The atomic number of an atom is the number of ____.
    11·2 answers
  • The reacting force that is equal to and opposite in the direction to the centripetal force and tends to fling air out of the cen
    10·1 answer
  • Solutions to environmental problems ________.
    14·1 answer
  • What are some of the characteristics scientists are looking for when they search for other Earth-like planets?
    15·1 answer
  • How do you find initial velocity?
    13·1 answer
  • How does a battery generate electrical energy
    11·1 answer
  • Two resistors R1 = 3 Ω and R2 = 6 Ω are connected in parallel. What is the net resistance in the circuit?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!