Answer:
COMPLETE QUESTION
A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?
Explanation:
Given that,
Extension of spring
x = 0.0208m
Mass attached m = 3.39kg
Additional mass to have a frequency f
Let the additional mass be m
Using Hooke's law
F= kx
Where F = W = mg = 3.39 ×9.81
F = 33.26N
Then,
F = kx
k = F/x
k = 33.26/0.0208
k = 1598.84 N/m
The frequency is given as
f = ½π√k/m
Make m subject of formula
f² = ¼π² •(k/m
4π²f² = k/m
Then, m4π²f² = k
So, m = k/(4π²f²)
So, this is the general formula,
Then let use the frequency above
f = 3Hz
m = 1598.84/(4×π²×3²)
m = 4.5 kg
Please be determined and being hardworking person do not rely on the other people to make your problems solved
Explanation:
Ok?
Answer:
When the Earth and sun are perfectly lined up, then it will happen. They can tell when it's going to happen.
Explanation:
This is why it only happens in some places. Some days it's not sunny out, so it's not going to happen.
Answer:
Heat
Explanation:
Heat is the main component in why everything is not 100% efficient. Heat is a byproduct of everything and cannot be avoided.
Answer:cart B
Explanation:
For cart A speed is constant therefore there is no acceleration because acceleration is rate of change of velocity
thus there is no net force
For cart B there is change in velocity in the left direction , so there is net acceleration towards left
so there is net force in the left direction
For cart C there is decrease in velocity i.e. negative acceleration or deceleration . Therefore there is a net force towards right which opposes the motion