Answer:
The time of Mars is 1.65 times larger on Mars than on Earth
Explanation:
The equation that describes the system is the final speed is equal to the speed minos the speed lost by the collision with the porhole
Vf = Vo - V pothole
B) let's transform the weight of free groin system and N international system
1 N = 0.2248 lb
2.8 lbs (1N / 0.2248lbs) = 12.5 N
c) Kinematic equations are the same in all inertial systems, Mars and Earth, so we can use the height equation, with zero initial velocity
Y = Vo t - ½ g t²
Y = - ½ g t²
t = √ 2Y / g
Mars
gm = 0.37g
gm = 0.37 9.8
gm = 3,626 m / s²
t = √( 2 1.9 / 3.626
)
t = 1.02 s
Earth
t = √( 2 1.9 / 9.8)
t = 0.62 s
To make the comparison of time we are the relationship between the two
tm / te = 1.02 / 0.62
tm / te = 1.65
The time of Mars is 1.65 times larger on Mars than on Earth
Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.
If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.
At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.
Answer:
21.4 mph
Explanation:
Circumference of tire in FEET = pi * d = pi * 1 ft = pi feet
pi feet x 600 rot/min * 60 min /hr * 1 mile / 5280 feet = 21.4 mph
-- Class I lever
The fulcrum is between the effort and the load.
The Mechanical Advantage can be anything, more or less than 1 .
Example: a see-saw
-- Class II lever
The load is between the fulcrum and the effort.
The Mechanical Advantage is always greater than 1 .
Example: a nut-cracker, a garlic press
-- Class III lever
The effort is between the fulcrum and the load.
The Mechanical Advantage is always less than 1 .
I can't think of an example right now.
The elasticity of a polymer is primarily due to the structure of the molecule and the cross-linking between strands. Hydrogen bonding is a contributor to the shape of the molecule, but not a major player in terms of elasticity. We would have to answer "false".
<span>
</span>