Electronic Configuration of elements in a period is same because If you see the electronic Configuration of elements in a period you will notice that the valence shell electrons for all elements are present in the same Shell. For example, in first period consisting of Hydrogen and Helium, both the elements' valence electrons are present in the same Shell.
Electronic Configuration of Hydrogen,
1s^1
Electronic Configuration of Helium,
1s^2
Both elements' valance electrons are present in the 1st shell
(This is just a small example to understand the concept because other periods are long but the first period is short that's why I gave the example of the first period)
The answer is 0.375 mol of silver chromate
Answer:
The atomic number of burienium will be 307.
Explanation:
During positron emission proton is converted into the neutron and one electron neutrino with positron is released. It means the atomic number will be reduce by one and atomic mass remain same.
For example:
²³Mg₁₂ → ₁₁Na²³+ e⁺+ Ve
Similarly, when highlinium-308 undergoes positron emission the new element burienium is produced and the atomic number will be 307 while atomic mass remain same.
Properties of beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation
Answer: 207.2
Explanation:
In imprecise terms, one AMU is the average of the proton rest mass and the neutron rest mass. This is approximately 1.67377 x 10 -27 kilogram (kg), or 1.67377 x 10 -24 gram (g). The mass of an atom in AMU is roughly equal to the sum of the number of protons and neutrons in the nucleus.
1) Radioactive decay is the spontaneous decomposition of the unstable nucleus of an atom.
2) The emission of a particle or a photon.
For example, alpha decay is radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus).
3) The result is usually more stable element with smaller atomic number.
For example, in alpha decay atom transforms into an atom with an atomic number that is reduced by two and mass number that is reduced by four.
For example nuclear fission is radioactive decay process in which the nucleus of an atom splits into smaller parts and huge amount of energy is released.