Answer:
Yes, yes it would since we need light
Explanation:
Answer: 0.333 h
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula</u>:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the material (the quantity we are asked to find)
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Clearing
:
(6)
Finally:
This is the half-life of the Bismuth-218 isotope
The farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
From the graph,
The positions reached after,
5 s = 4 m
10 s = 2 m
20 s = 2 m
35 s = 3 m
40 s = 0 m
So the farthest position here is 4 m into the tunnel.
The rate of change of positions is displacement. So displacement will be change in initial and final positions divided by change in time.
s = Δx / Δt
Therefore, the farthest position the mouse reaches inside the tunnel is 4 meters into the tunnel.
To knw more about displacement
brainly.com/question/28609499
#SPJ1
Answer:
M=28.88 gm/mol
Explanation:
Given that
T= 95 K
P= 1.6 atm
V= 4.87 L
m = 28.6 g
R=0.08206L atm .mol .K
We know that gas equation for ideal gas
P V = n R T
P=Pressure , V=Volume ,n=Moles,T= Temperature ,R=gas constant
Now by putting the values
P V = n R T
1.6 x 4.87 = n x 0.08206 x 95
n=0.99 moles
We know that number of moles given as

M=Molar mass


M=28.88 gm/mol