<span>A. Boyle's law only works when the pressure is constant.
</span><span>D. Charles's law relates volume and pressure.
Hope this helps!</span>
Answer:
Explanation:
Total momentum of the system before the collision
.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left
If v be the velocity of the stuck pucks
momentum after the collision = 2 v
Applying conservation of momentum
2 v = - .75
v = - .375 m /s
Let after the collision v be the velocity of .5 kg puck
total momentum after the collision
.5 v + 1.5 x .231 = .5v +.3465
Applying conservation of momentum law
.5 v +.3465 = - .75
v = - 2.193 m/s
2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.
Kinetic energy before the collision
= 2.25 + 1.6875
=3.9375 J
kinetic energy after the collision
= .04 + 1.2 =1.24 J
So kinetic energy is not conserved . Hence collision is not elastic.
3 ) Change in the momentum of .5 kg
1.5 - (-1.0965 )
= 2.5965
Average force applied = change in momentum / time
= 2.5965 / 25 x 10⁻³
= 103.86 N
Answer:
The z-component of the force is
Explanation:
From the question we are told that
The charge on the particle is
The magnitude of the magnetic field is 
The velocity of the particle toward the x-direction is 
The velocity of the particle toward the y-direction is

The velocity of the particle toward the z-direction is

Generally the force on this particle is mathematically represented as

So we have

substituting values
So the z-component of the force is
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).
Explanation:
Initial energy = final energy + work done by friction
PE = PE + KE + W
mgH = mgh + 1/2 mv² + W
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000
v = 22.1 m/s
Without friction:
PE = PE + KE
mgH = mgh + 1/2 mv²
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²
v = 23.4 m/s