Answer:
here given is a weight
then force becomes mg
that is F=Mg
=4*9.8
then by using the formula
F=Ma
a=F/M
=4*9.8/9.8
=4
Explanation:
Answer: Some of the thing that are important for clouds to form are: Moisture - There must be sufficient water vapor in the air for a cloud to form. Cooling air - The air temperature must decrease enough for water vapor to condense
Explanation:
Answer:
754.3 m
Explanation:
The moment of inertia of the solid disk:

Where m is the disk mass and R is the radius of the disk.

The angular kinetic energy of the disk is then:

By law of energy conservation, this energy is converted to potential energy to pick up the 3kg block
let g = 9.8 m/s2

where
= 3 kg is the mass of block


Answer:
b. v = 0, a = 9.8 m/s² down.
Explanation:
Hi there!
The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?
Let´s take a look at the height function:
h(t) = h0 + v0 · t + 1/2 g · t²
Where
h0 = initial height
v0 = initial velocity
t = time
g = acceleration due to gravity
Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.
Another way to see it (without calculus):
When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.
The geosphere interacts with the hydrosphere when water causes rock to erode. The atmosphere provides the geosphere with heat and energy for erosion, and the geosphere reflects the sun's energy back into the atmosphere.