Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N
I think the correct answer would be the third option. The criteria that could help Linda in classifying whether the gases are greenhouse gases would be gas molecules having at least one oxygen atom. Most of the greenhouse gases has an oxygen atom in their structures especially those that naturally occurs. These gases are CO2, H2O vapor and nitrous oxide.
Answer:
All i kno is that that kid ain't gonna be ok
Explanation:
if u tell me how to do it ill do it
There is no such thing as"cold", in the same way that there is no such thing
as "darkness" or "quietness". "Darkness" is the absence of light, "quietness"
is the absence of sound, and "cold" is the absence of heat.
Tom should have said that insulation <em>keeps the heat in</em> .
Answer:
<h3>473.8 m/s; 473.8 m/s</h3>
Explanation:
Given the initial velocity U = 670m/s
Horizontal velocity Ux = Ucos theta
Vertical component of the cannon velocity Uy = Usin theta
Given
U = 670m/s
theta = 45°
horizontal component of the cannonball’s velocity = 670 cos 45
horizontal component of the cannonball’s velocity = 670(0.7071)
horizontal component of the cannonball’s velocity = 473.757m/s
Vertical component of the cannonball’s velocity = 670 sin 45
Vertical component of the cannonball’s velocity = 670 (0.7071)
Vertical component of the cannonball’s velocity = 473.757m/s
Hence pair of answer is 473.8 m/s; 473.8 m/s