Answer:
b) It is impossible to tell without knowing the masses.
Explanation:
The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

where
Q is the amount of heat
m is the mass of the substance
Cs is the specific heat capacity of the substance
In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.
Answer:

Explanation:
given,
J = 50 kg-m²
frequency, f = 20 Hz
time ,t = 5 s
we know,
angular velocity = 2 π f
ω = 2 π x 20
ω = 125.66 rad/s
now, angular acceleration calculation


α = 25.13 rad/s²
Torque given to the flywheel.



Torque of the given flywheel is equal to 
Answer:

Explanation:
Length of the conveyor belt is given as

time taken to cook one burger is given as

now we can find the speed of the belt as



Now we know that the distance between two burgers is given as 25 cm

now the production rate of burgers is given as





Answer:
B. to the right
Explanation:
Given:
- distance of the test charge from +Q, r
- distance of test charge from +2Q, 2r
<u>Force on the test charge due to +Q:</u>

<u>Force on the test charge due to +Q:</u>

Since all the charges are positive here, so they will try to repel the test charge away. And the force due to charge +Q will be greater so initially the test charge will move rightwards away from the +Q charge.
Answer:
B i think is the answer
Explanation:
i feel like it is B because if you put them together and the answer is 1.5 so it is B