According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer:
The lose of thermal energy is, Q = 22500 J
Explanation:
Given data,
The mass of aluminium block, m = 1.0 kg
The initial temperature of block, T = 50° C
The final temperature of the block, T' = 25° C
The change in temperature, ΔT = 50° C - 25° C
= 25° C
The specific heat capacity of aluminium, c = 900 J/kg°C
The formula for thermal energy,
<em>Q = mcΔT</em>
= 1.0 x 900 x 25
= 22500 J
Hence, the lose of thermal energy is, Q = 22500 J
Answer:
option (b)
Explanation:
Let the resistance of each resistor is R.
In series combination,
The effective resistance is Rs.
rs = r + R + R + .... + n times = NR
Let V be the source of potential difference.
Power in series
Ps = v^2 / Rs = V^2 / NR ..... (1)
In parallel combination
the effective resistance is Rp
1 / Rp = 1 / R + 1 / R + .... + N times
1 / Rp = N / R
Rp = R / N
Power is parallel
Rp = v^2 / Rp = N V^2 / R ..... (2)
Divide equation (1) by equation (2) we get
Ps / Pp = 1 / N^2
Answer:
<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg
k = 0.4
F = 200 N
<u>To </u><u>find </u><u>-</u><u> </u> acceleration
<u>Solution </u><u>-</u><u> </u>
F= kMA
200 = 0.4 * 20 * acceleration
200 = 8 * a
a = 8/200
a = 0.04 m s²
<h3>a = 0.04 m s²</h3>