Complete Question
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).
Answer:
The pressure at the brain is 
Explanation:
Generally is mathematically denoted as

Substituting
for
(the density) ,
for g (acceleration due to gravity) , 0.4m for h (the height )
We have that the pressure difference between the heart and the brain is

But the pressure of blood at the heart is given as

Now the pressure at the brain is mathematically evaluated as



Answer:using Newton third law
Let initial velocity of block be u1=3m/s
Mass of moving block m1 =1kg
Final velocity of block =V
Mass of stationary block m2= 4kg
Since they stick together, their final velocity will be the same.
m1u1 + m2u2=(m1+m2)v
(1*3)+(0*4)=(1+4)v
3=5v
Divide both sides by 5
V=0.6
Final velocity is 0.6m/s
Explanation:
Answer:
A force has both magnitude and direction, therefore: Force is a vector quantity; its units are newtons, N. Forces can cause motion; alternatively forces can act to keep (an) object(s) at rest. ... Consider two forces of magnitudes 5 N and 7 N acting on a particle, with an angle of 90◦ between them.
Explanation:
from google
Answer:
The hot coffee has a higher temperature, but not a greater internal energy. Although the iceberg has less internal energy per mass, its enormously greater mass gives it a greater total energy than that in the small cup of coffee.
Explanation: