We have to remember a point , which is ' the cart or spring rest on a smooth horizontal track ' , i.e., any frictional force doesn't take place.
<u>Explanation:</u>
a) According to the question the cart is pulled to position A and released, i.e., the velocity of the cart at A initially (say time,t=0) is 0 m/s ,then moves toward position E, where it reverses direction and returns again to position A , in the 2nd phase cart moves along A to E , the cart's velocity increase and again goes to zero at point E and again change the direction, hence
( File has been attached)
b) Let's , the distance between two consecutive points is x meter and the spring constant is k N.m
c) ( File has been attached)
d) Movinf Right
e) Moving left
Hi there! Hopefully this helps!
-------------------------------------------------------------------------------------------------
The SI system of amplitude is a metre (m).
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
Answer:
Option b. is correct
Explanation:
An RLC electrical circuit consists of constituent components: a resistor (R), an inductor (L), and a capacitor (C). A resistor, an inductor, and a capacitor are connected in series or parallel.
The impedances of the circuit elements depend on the frequency.
Both impedance magnitudes decrease when the frequency increases
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.