Answer:
C. It does not emit electromagnetic radiation.
Explanation:
Right now, Dark Matter is only a theory. Scientist proposed this to counter some of the strange phenomenon with matter in space.
Scientists know little about dark matter. Some say it's one of the driving forces of the universe. Currently, scientists have no way of measuring or identifying dark matter.
Knowing the ratio between atoms we can write an empirical formula:
<span>C4H6O </span>
<span>we compute the molar mass of this single formula: </span>
<span>4x12 + 6 x 1 + 16 x1 = 70 g / mol </span>
<span>Now, as we know the actual molar mas being 280 g/mol, we divide this number by 70 and we get the ratio between empirical formula and molecular actual formula: </span>
<span>280 / 70 = 4 </span>
<span>This means that actual molecular formula is: </span>
<span>(C4H6O)4 or </span>
<span>C16H24O4 </span>
Explanation:
Hydrogen does not obey the octet rule. Boron does not always
obey the octet rule and in fact forms Lewis acids such as BF3 which
only has 6 electrons.
The correct answer would be the last option. A double displacement type of reaction involves the switching of places the cations and anions accordingly. The given reaction is erroneous since in the product side the anions and cations are being paired which would not make sense. The correct reaction should be
4NaBr + Co(SO3)2 yields <span>CoBr4 + 2Na2SO3</span>
I think the correct answer would be the third option. The correct name for the hydrocarbon described above would be 2-heptyne. It has a chemical formula written as CH3 - CH2 - CH2 - CH2 - C ≡ C - CH3. Counting the number of carbons, we have 7 carbon atoms so we use the prefix hepta-. Since it has a triple bond then it is an alkyne. So, it would be named as heptyne. The triple bond is located on the second carbon atom so we write 2 before the name to indicate the location of the triple bond. The name of the compound would be 2-heptyne.