Answer:
2 L is the new volume
Explanation:
We can apply the Ideal Gases Law to solve the problem.
At STP, we kwow that 1 mol of gas occupy a volume of 22.4 L
Then, how many moles do we have in 1 L?
Let's do it by a rule of three:
(1L . 1 mol) / 22.4L = 0.0446 moles
These moles are at 1 atm and 273 K of temperature, so let's change our conditions.
P . V = n . R .T
1 atm . V = 0.0446 mol . 0.082 L.atm/mol K . 546 K
V = 2 L
If we pay attention, we can notice that, if we double temperature, we double the volume.
Answer:
b) It produces electrical current spontaneously.
Explanation:
Cells capable of converting chemical energy to electrical energy and vice versa are termed Electrochemical cells. There are two types of electrochemical cells viz: Galvanic or Voltaic cells and Electrolytic cells. Voltaic cell is an elctrochemical cell capable of generating electrical energy from the chemical reaction occuring in it.
The voltaic cell uses spontaneous reduction-oxidation (redox) reactions to generate ions in a half cell that causes electric currents to flow. An half cell is a part of the galvanic cell where either oxidation or reduction reaction is taking place. Hence, the spontaneous production of electric currents is true about Voltaic/Galvanic cells.
V1M1c1 = V2M2c2
29 x 0.26 x 1 = V2 x 0.4 x 2
V2 = 9.425
A mole of sodium chloride has mass 58.44 grams. You get that from adding the molar masses of sodium and chlorine, which are listed on the periodic table.
<span>58.44 g/mol * 4.40 mol = 257.1 or ≈ 257 grams with 3 significant figures</span>