The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.
On the surface, their centers are separated by 1 Earth radius.
12,000 miles above the surface, they're separated by 4 Earth radiii.
(4/1) = 4
So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.
(321 lb) / (16) = (20 and a hair) lb
The correct choice from the given list is " <em>>20 lb "</em> .
Answer:
As the mass of an object increases, its gravitational force increases.
As an object's distance to other objects increases, its gravitational force on those objects increases.
Explanation:
The gravitational force of one object on another is calculated with the equation
F = (G*m1*m2)/(r²),
where G is the gravitational constant,
M1 and M2 are the masses of the two objects, and
r is the distance between them
We can see that the force has a direct relationship with both of the mass values, and an inverse square relationship with the distance between them.
Hope this helped!
Short distance to turn the circumference of the wheels. Mechanical advantage is load/effort I think
I believe the answer is A Voltage available to each light remains constant regardless of the number of lights that are on.
The oceanic zone has warm water and a lot of sunlight, ocean floor starts to slope downwards.