A: Human Body
C is wrong because they don’t have the tools to test it on another planet
Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
Answer:

Explanation:
We know that acceleration is change in velocity over time.


v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.

Add u to both sides.

Answer:
4000J
Explanation:
Given parameters:
Weight of the man = 800N
Height of ladder = 5m
Unknown:
Gravitational potential energy gained = ?
Solution:
The gravitational potential energy is due to the position of a body.
Gravitational potential energy = weight x height
Now insert the parameters;
Gravitational potential energy = 800 x 5 = 4000J
Yes potential increases while kinetic decreases