The relative motion of gaseous particles increases with increase in the temperature of the gas molecules just like the motion of popcorn in a popper increases when heat is applied to the popper.
<h3>What is kinetic theory of gas?</h3>
The kinetic theory of gases or matter states that matter consists of tiny particles which are constant motion, colliding with one another and with walls of the containing vessels.
Just like a popcorn in a popcorn popper pops when heat is applied to the popper, gases contained in a cylinder increases their speed when they acquire more kinetic energy as the temperature of the cylinder increases.
Thus, the motion of gas particles depends on the temperature of the containing vessel so also does the random motion of popcorn depends on the temperature of the popper.
Learn more about kinetic theory of gases here: brainly.com/question/11067389
#SPJ1
"Force of friction between the crate and the floor of the truck" is the one force among the choices given in the question that <span>causes the crate to accelerate forward. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
<h2>Answer:</h2>
The diagram is not showing the second law of thermodynamics. It is the demonstration of 1st law of thermodynamics.
<h3>Explanation:</h3>
Second law of thermodynamics describes the entropy of the system increase with time, it does not decrease with time. It is constant for ideal systems.
While in first law of thermodynamics, it is stated that the energy of a system can not be lost but it is transferred from one form to other form.
And in this picture, it is shown that the energy released from heat source to cold sink is used in doing work.
Work and heat are forms of energy.
Answer:
1.t=-1.96sec
2.H=4.8m
3.T=1.96sec
4.R=19.2m
Explanation:
u=9.8,t=?,sin theta=1
using formula t=2usintheta/g
t=2x9.8x1=19.6/10
t=1.96seconds
using formula H=u(squared)sin(squared)theta/2g
H=9.8(squared)x1(squared)/2x10
H=96x1/20
H=96/20
H=4.8m
using formula T=2usintheta/g
T=2x9.8x1/10
T=19.6/10
T=1.96sec
using the formula R=u(squared)sin2theta/g
R=9.8(squared)x2/10
R=96x2/10
R=192.08/10
R=19.2