When hockey players push the puck along the ice it slides causing heat which melts the ice causing the friction against the ice to be less.
Answer:
v =
m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

The velocity vector v is the first derivative of the position vector r with respect to time:
![\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}](https://tex.z-dn.net/?f=%5Coverrightarrow%7Bv%7D%3D%5Bvcos%28%5Comega%20t%29-%5Comega%20vtsin%28%5Comega%20t%29%5D%5Chat%7Bx%7D%2B%5Bvsin%28%5Comega%20t%29%2B%5Comega%20vtcos%28%5Comega%20t%29%5D%5Chat%7By%7D)
The given values are:


They both are two different elements.SO the answer is Element
Answer:
it would be 3
Explanation:
because you have to divide the length by the height of the incline.
Answer:
Loss, 
Explanation:
Given that,
Mass of particle 1, 
Mass of particle 2, 
Speed of particle 1, 
Speed of particle 2, 
To find,
The magnitude of the loss in kinetic energy after the collision.
Solve,
Two particles stick together in case of inelastic collision. Due to this, some of the kinetic energy gets lost.
Applying the conservation of momentum to find the speed of two particles after the collision.



V = 6.71 m/s
Initial kinetic energy before the collision,



Final kinetic energy after the collision,



Lost in kinetic energy,



Therefore, the magnitude of the loss in kinetic energy after the collision is 10.63 Joules.