Answer:
Blood is a homogenous mixture
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


F=ma, in this case your force=-883 N and mass = 90 kg. F/m=a therefore acceleration=-883/90=-9.81 m/s/s
Answer:
-26 m/s.
Explanation:
Hello,
In this case, since the vertical initial velocity is 26 m/s and the vertical final velocity is 0 m/s at P, we compute the time to reach P:

With which we compute the maximum height:

Therefore, the final velocity until the floor, assuming P as the starting point (Voy=0m/s), turns out:

Which is clearly negative since it the projectile is moving downwards the starting point.
Regards.