
Let's solve ~
Initial concentration of weak acid HA = 0.200 M
and dissociation constant (
) is :


Now, at initial stage :
At equilibrium :
Now, we know :
![\qquad \sf \dashrightarrow \: { K_a = \dfrac{[H+] [A-]}{[HA]}}](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%20%7B%20K_a%20%3D%20%5Cdfrac%7B%5BH%2B%5D%20%5BA-%5D%7D%7B%5BHA%5D%7D%7D%20)
( big brackets represents concentration )




She would divide that mass of each element by it molar mass the answer is C <span />
The total energy includes sensible heat to raise the temperature from 75.1°C to the boiling point. It also includes the latent heat to convert the liquid to gas. Then, it also includes sensible heat from he boiling point to 115.1°C. The equation is:
Energy = nCp,liquid(T,bp - T₁) + nΔH + nCp,gas(T₂ - T,bp)
where
n is the number of moles
T,bp is the boiling point of benzene at 80.1°C
Cp,liquid = 134.8 J/mol·°C
Cp,gas = 82.44 J/mol·°C
ΔH = 87.1 J/mol
Energy = (3.12 moles)(134.8 J/mol·°C)(80.1°C - 75.1°C) + (3.12 moles)(87.1 J/mol) + (3.12 moles)(82.44 J/mol·°C)(115.1°C - 80.1°C)
Energy = 11,377.08 J
Global Warming is tthe cause