Answer:
W = 2.74 J
Explanation:
The work done by the charge on the origin to the moving charge is equal to the difference in the potential energy of the charges.
This is the electrostatic equivalent of the work-energy theorem.

where the potential energy is defined as follows

Let's first calculate the distance 'r' for both positions.

Now, we can calculate the potential energies for both positions.

Finally, the total work done on the moving particle can be calculated.

Answer:
an air mass is a volume of air defined by its temperature and water vapor content. Air masses cover many hundreds or thousands of miles, and adapt to the characteristics of the surface below them. They are classified according to latitude and their continental or maritime source regions. Colder air masses are termed polar or arctic, while warmer air masses are deemed tropical. Continental and superior air masses are dry while maritime and monsoon air masses are moist. Weather fronts separate air masses with different density (temperature and/or moisture) characteristics. Once an air mass moves away from its source region, underlying vegetation and water bodies can quickly modify its character.When winds move air masses, they carry their weather conditions (heat or cold, dry or moist) from the source region to a new region. When the air mass reaches a new region, it might clash with another air mass that has a different temperature and humidity. This can create a severe storm.
Air masses can affect the weather because of different air masses that are different in temperature, density, and moisture. When two different air masses meet a front forms. This is one way air masses effect our weather.
Acceleration no longer exist as the car stops.
Answer:
C) 350 m/s N
Explanation:
Velocity is measured in miles per hour or metres per second.
Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.