Answer:
A bowling ball has a mass of 10 kilograms. A tennis ball has a mass of 0.08 kg. How much inertia does the bowling ball have compared to the tennis ball? 10 kg - 0.08 kg = 10.80 kg Since the bowling ball has more mass, naturally it has more inertia since inertia is a quantity that is solely dependent upon the mass
Explanation:
Answer:
Electron
Explanation:
An object can become electrically charged when it gains or loses an electron. Because an electron is negatively charged, when an object gains an electron it becomes negatively charged. Also, when it gives up an electron, it becomes positively charged. This positive charge is because the atom has one proton more than electron. In a neutral atom, the number of the proton is equal to the number of the electron. An electron is negatively charged, and a proton is positively charged.
Answer:
Explanation:
Mass =11.2kg
Constant velocity =3.3m/s
μk=0.25
Since the body is moving in constant velocity, then the acceleration is zero(0).
ΣF = Σ(ma)
The normal force acting on the body is upward and the weight is acting downward
Then ΣFy=0
Therefore, N=W
W=mg=11.2×9.8=109.76N
So, N=W=109.76N
Frictional force is given as
Fr=μkN
Fr=0.25×109.76
Fr=27.44N
Frictional force acting against the motion is 27.44N
Then the forward force moving the body forward
ΣF = Σ(ma)
Since a = 0
Then,
ΣF = 0
F-Fr=0
Then F=Fr
So the force moving the body forward is 27.44N