Presuming the arrow is between H20 and CO
On the left there are 2 gas moles.
On the right there are 4 gas moles.
The equilibrium will shift to the side with the most no. He gas moles when pressure is decreased.
Therefore the answer is A, since 4>2.
If you have any questions, feel free to ask
Answer:
<em><u>To determine the number of significant figures in a number use the following 3 rules:</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.</u></em>
<em><u>To determine the number of significant figures in a number use the following 3 rules:Non-zero digits are always significant.Any zeros between two significant digits are significant.A final zero or trailing zeros in the decimal portion ONLY are significant.</u></em>
<h3>
Answer:</h3>
12.387 moles
<h3>
Explanation:</h3>
We are given;
Temperature of chlorine, T = 120°C
But, K = °C + 273.15
Therefore, T = 393.15 K
Pressure, P = 33.3 Atm
Volume, V = 12 L
We are required to calculate the number of moles of chlorine gas,
To find the number of moles we are going to use the ideal gas equation;
PV = nRT
R is the ideal gas constant, 0.082057 L.atm/mol.K
Therefore, rearranging the formula;
n = PV÷RT
Hence;
n = (33.3 atm × 12 L) ÷ (0.082057 × 393.15 K)
= 12.387 moles
Therefore, the number of moles of chlorine are 12.387 moles
Answer:
Explanation:
A chemical formula can be defined as a notation that is used to show which element and how many is contained in a chemical compound.
Also, in chemistry, the sum of charges of the anion and the cation of any ionic compound is always equal to zero.
A chemical equation is considered to be balanced when the amount of reactants on the left is equal to the amount of products on the right.
Therefore;
[2]FeBr3 + [3]Na2S → [1]Fe2S3 + [6]NaBr
In the above chemical equation, we will balance the reactants in the chemical equation with the smallest coefficients possible;
Two (2) moles of Iron (III) Bromide reacts with two (2) moles of Sodium Sulfide to form Iron (III) Sulfide and Sodium Bromide.