The law of conservation of mass applies to every reaction. In this case, you start with 1 Mg, 2 H, and 2CL and end up with the same five only their bonds have been rearranged, or in other words, they are joined up differently.
Answer:
189.2 KJ
Explanation:
Data Given
wavelength of the light = 632.8 nm
Convert nm to m
1 nm = 1 x 10⁻⁹
632.8 nm = 632.8 x 1 x 10⁻⁹ = 6.328 x 10⁻⁷m
Energy of 1 mole of photon = ?
Solution
Formula used
E = hc/λ
where
E = energy of photon
h = Planck's Constant
Planck's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light
speed of light = 3 × 10⁸ ms⁻¹
λ = wavelength of light
Put values in above equation
E = hc/λ
E = 6.626 x 10⁻³⁴ Js ( 3 × 10⁸ ms⁻¹ / 6.328 x 10⁻⁷m)
E = 6.626 x 10⁻³⁴ Js (4.741 x 10¹⁴s⁻¹)
E = 3.141 x 10⁻¹⁹J
3.141 x 10⁻¹⁹J is energy for one photon
Now we have to find energy of 1 mole of photon
As we know that
1 mole consists of 6.022 x10²³ numbers of photons
So,
Energy for one mole photons = 3.141 x 10⁻¹⁹J x 6.022 x10²³
Energy for one mole photons = 1.89 x 10⁵ J
Now convert J to KJ
1000 J = 1 KJ
1.89 x 10⁵ J = 1.89 x 10⁵ /1000 = 189.2 KJ
So,
energy of one mole of photons = 189.2 KJ
Answer:
The web page of a university
Explanation:
A scientist can be more biased within coming to information about pretty much anything. I have had multiple science teachers who seem more biased on to something else and pretend that they're right just cause they know what they are doing.
Then the university would be a great choice because its controlled by a higher state, then also the consistency of being updated.
Answer:
Covalent compounds are held by intermolecular forces while network solids are held by strong bonds in unit cells which are closely packed together.
Explanation:
Covalent compound molecules are held by vanderwaals forces which are relatively weak but strong enough to hold some covalent molecules together in the solid state. However, network solids contain atom to atom covalent bonds arranged in an orderly manner and regular repeating unit cells to form a rigid three dimensional network solid.
Answer:
The molarity of the formed CaBr2 solution is 0.48 M
Explanation:
Step 1: Data given
Number of moles CaBr2 = 0.72 moles
Volume of water = 1.50 L
Step 2: Calculate the molarity of the solution
Molarity of CaBr2 solution = moles CaBr2 / volume water
Molarity of CaBr2 solution = 0.72 moles / 1.50 L
Molarity of CaBr2 solution = 0.48 mol / = 0.48 M
The molarity of the formed CaBr2 solution is 0.48 M