1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igomit [66]
3 years ago
12

Two loudspeakers are located 3.0 m apart on the stage of an auditorium. A listener at point P is seated 19.0 m from one speaker

and 15.0 m from the other. A signal generator drives the speakers in phase with the same amplitude and frequency. The wave amplitude at P due to each speaker alone is A. The frequency is then varied between 30 Hz and 400 Hz. The speed of sound is 343 m/s. At what frequency or frequencies will the listener at P hear a maximum intensity?
Physics
1 answer:
Amanda [17]3 years ago
7 0

Answer:

The frequencies that the listener at P will hear a maximum intensity are: 85.75 Hz, 171.5 Hz, 257.25 Hz and 343 Hz.

Explanation:

Path Difference Δx is given as: nλ

where λ = \frac{v}{f}

Δx can be re-written as: n×\frac{v}{f}

where;

n = integer

v = speed of sound = 343 m/s

f = frequency

Δx  = 19.0 m - 15.0 m

Δx  = 4.0 m

4.0 m = \frac{n*343}{f}

f = \frac{n*343}{4}

f = n × 85.75 Hz

Now;  n = 1, 2, 3, 4 ; the frequencies that the listener at P will hear the maximum intensity will be

when n= 1

f = 1 × 85.75 Hz

f = 85.75 Hz

when n= 2

f = 2 × 85.75 Hz

f = 171.5 Hz

when n= 3

f = 3  × 85.75 Hz

f = 257.25 Hz

when n= 4

f = 4 × 85.75 Hz

f = 343 Hz

∴ the frequencies that the listener at P will hear the maximum intensity will be : 85.75 Hz, 171.5 Hz, 257.25 Hz and 343 Hz for n =1,2,3, and 4 respectively.

You might be interested in
At a point 1.2 m out from the hinge, 14.0 N force is exerted at an angle of 27 degrees to the moment arm in a plane which is per
geniusboy [140]

Answer:

\tau = 7.63 Nm

Explanation:

As we know that moment of force is given as

\tau = \vec r \times \vec F

now we have

\vec r = 1.2 m

\vec F = 14 N

now from above formula we have

\tau = r F sin\theta

here we know that

\theta = 27 degree

so we have

\tau = (1.2)(14) sin27

\tau = 7.63 Nm

3 0
3 years ago
A stone that is dropped freely from rest traveled half the total height in the last second. with what velocity will it strike th
alexira [117]

Answer:

hellooooo :) ur ans is 33.5 m/s

At time t, the displacement is h/2:

Δy = v₀ t + ½ at²

h/2 = 0 + ½ gt²

h = gt²

At time t+1, the displacement is h.

Δy = v₀ t + ½ at²

h = 0 + ½ g (t + 1)²

h = ½ g (t + 1)²

Set equal and solve for t:

gt² = ½ g (t + 1)²

2t² = (t + 1)²

2t² = t² + 2t + 1

t² − 2t = 1

t² − 2t + 1 = 2

(t − 1)² = 2

t − 1 = ±√2

t = 1 ± √2

Since t > 0, t = 1 + √2.  So t+1 = 2 + √2.

At that time, the speed is:

v = at + v₀

v = g (2 + √2) + 0

v = g (2 + √2)

If g = 9.8 m/s², v = 33.5 m/s.

4 0
3 years ago
A 3.15-kg object is moving in a plane, with its x and y coordinates given by x = 6t2 − 4 and y = 5t3 + 6, where x and y are in m
ArbitrLikvidat [17]

Answer:

<h2>206.67N</h2>

Explanation:

The sum of force along both components x and y is expressed as;

\sum Fx = ma_x  \ and \ \sum Fy = ma_y

The magnitude of the net force which is also known as the resultant will be expressed as R =\sqrt{(\sum Fx)^2 + (\sum Fx )^2}

To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.

Given the position of the object along the x-component to be x = 6t² − 4;

a_x = \frac{d^2 x }{dt^2}

a_x = \frac{d}{dt}(\frac{dx}{dt} )\\ \\a_x = \frac{d}{dt}(6t^{2}-4  )\\\\a_x = \frac{d}{dt}(12t  )\\\\a_x = 12m/s^{2}

Similarly,

a_y = \frac{d}{dt}(\frac{dy}{dt} )\\ \\a_y = \frac{d}{dt}(5t^{3} +6 )\\\\a_y = \frac{d}{dt}(15t^{2}   )\\\\a_y = 30t\\a_y \ at \ t= 2.15s; a_y = 30(2.15)\\a_y = 64.5m/s^2

\sum F_x = 3.15 * 12 = 37.8N\\\sum F_y = 3.15 * 64.5 = 203.18N

R = \sqrt{37.8^2+203.18^2}\\ \\R = \sqrt{1428.84+41,282.11}\\ \\R = \sqrt{42.710.95}\\ \\R = 206.67N

Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N

7 0
3 years ago
How much force would be needed to cause a 4.6kg object to accelerate at 9.2m/s/s? *
poizon [28]

Answer:

<h2>42.32 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

force = 4.6 × 9.2

We have the final answer as

<h3>42.32 N</h3>

Hope this helps you

5 0
2 years ago
Where is planet mercury located in the solar system?
olya-2409 [2.1K]
Its orbit is between Venus' and the sun.
7 0
3 years ago
Other questions:
  • Calculate the linear acceleration (in m/s2) of a car, the 0.330 m radius tires of which have an angular acceleration of 13.0 rad
    14·1 answer
  • Ryan swings a pail of water in a vertical circle 1.0 m in radius at a constant speed. If the water is NOT to spill on him:
    8·1 answer
  • Which of the following should not be held constant during this experiment?
    9·2 answers
  • (b) A 0.13−kg baseball thrown at 100 mph has a momentum of 5.9 kg · m/s. If the uncertainty in measuring the mass is 1.0 × 10−7
    6·1 answer
  • Which of the following statements correctly describes the position of the intake and exhaust valves during most of the power sta
    8·2 answers
  • PLEASE HELP ASAP!! 25 POINTS!! how is Earth's surface likely to change along the edges of a bend in a river Channel?
    14·2 answers
  • (a) In the deep space between galaxies, the density of atoms is as low as 106 atoms/m^3 , and the temperature is a frigid 2.7 K.
    13·1 answer
  • How much work is done lifting a 5 kg ball from a height of 2 m to a height of 6 m? (Use 10 m/s2 for the acceleration of gravity.
    7·1 answer
  • Can someone help me find the answer?
    11·2 answers
  • The graph describes the motion of an object.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!