Answer:
The current would stop
Explanation:
Electric currents are interesting because they carry little to no momentum. As soon as you remove a power source, the whole current halts.
Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s
Explanation:
From Newton's second law:
F = ma
Given that m = 4 kg and a = 8 m/s²:
F = (4 kg) (8 m/s²)
F = 32 N
If m is reduced to 1 kg and F stays at 32 N:
32 N = (1 kg) a
a = 32 m/s²
So the acceleration increases by a factor of 4.
Answer:
melting polar icecaps seems the best, hopes this helps!
Photon is a quantum of light or a single packet/particle of light at a given wavelength.
Answer: Option B
<u>Explanation:
</u>
It is known that light has dual nature of wave as well as particles. Light waves can behave in wave nature as well as in particle nature depending upon the situation. So the light waves are assumed in different views to easily understand the nature of light waves.
There are several models proposed to simplify the nature of light. Among the several assumptions, one of the most prominent observations are that light waves or quantum of light are termed as photons which are made up of single packet/particles of light in a given wavelength.