The capacitance of a capacitor is the ratio of the stored charge to its potential difference, i.e.
C = Q/ΔV
C is the capacitance
Q is the stored charge
ΔV is the potential difference
Rearrange the equation:
ΔV = Q/C
We also know the capacitance of a parallel-plate capacitor is given by:
C = κε₀A/d
C is the capacitance
κ is the capacitor's dielectric constant
ε₀ is the electric constant
A is the area of the plates
d is the plate separation
If we substitute C:
ΔV = Qd/(κε₀A)
We assume the stored charge and the area of the plates don't change. Then if we double the plate spacing, i.e. we double the value of d, then the potential difference ΔV is also doubled.
<span>the smallest structural and functional unit of an organism, typically microscopic and consisting of cytoplasm and a nucleus enclosed in a membrane. Microscopic organisms typically consist of a single cell, which is either eukaryotic or prokaryotic.</span>
Answer:
Electromagnetic waves are reflected
Explanation:
Reflection of light (and other forms of electromagnetic radiation) occurs when the waves encounter a surface or other boundary that does not absorb the energy of the radiation and bounces the waves away from the surface. ... This concept is often termed the Law of Reflection.
Angular velocity = (75x2pie)/60
=2.5pie ras^-1
linear velocity(or speed) at end of string, v = radius x angular velocity
v= 0.5 x 2.5pie
v=3.93 ms^-1
tension of string (I beleve is centeral force aplied by string), F= (mv^2)/r
F= (0.2 x 3.93^2)/0.5
F=6.18 N
(sorry if wrong)