Electric potential energy is defined as Ep=Q*V where Q is the magnitude of the charge and V is the potential difference. So when a charge moves between the points that have a potential difference, it's energy changes.
In our case:
Q=2e=2*(-1.6*10^-19) C
V=75 V
Ep=(-3.2*10^-19)*75
Ep=-2.4*10^-17 J
The change in potential energy of the charge is -2.4*10^-17 J
Answer:
The mass of moon is 1/100 times and its radius 1/4 times that of earth. As a result, the gravitational attraction on the moon is about one sixth when compared to earth. Hence, the weight of an object on the moon is 1/6th its weight on the earth.
Answer:
Magnesium atomic no. = 24,25,26. These are the two elements which have same atomic no
Explanation:
Answer:
1/3 the distance from the fulcrum
Explanation:
On a balanced seesaw, the torques around the fulcrum calculated on one side and on another side must be equal. This means that:

where
W1 is the weight of the boy
d1 is its distance from the fulcrum
W2 is the weight of his partner
d2 is the distance of the partner from the fulcrum
In this problem, we know that the boy is three times as heavy as his partner, so

If we substitute this into the equation, we find:

and by simplifying:

which means that the boy sits at 1/3 the distance from the fulcrum.
Limiting factors are resources or other factors in the environment that can lower the population growth rate. Competition for resources like food and space cause the growth rate to stop increasing, so the population levels off. This flat upper line on a growth curve is the carrying capacity.