Get your numbers gathered up and solve the problem in the ordered step
From the law of Galileo Galilei :v²=v₀²+2ad we take the speed
v²=0+2*4.90*200=1960=>v=√1960=44.27 m/s
The answer is c. +2.0 µC
To calculate this, we will use Coulomb's Law:
F = k*Q1*Q2/r²
where F is force, k is constant, Q is a charge, r is a distance between charges.
k = 9.0 × 10⁹ N*m/C²
It is given:
F = 7.2 N
d = 0.1 m = 10⁻¹ m
Q1 = -4.0 µC = 4 * 1.0 × 10⁻⁶ = 4.0 × 10⁻⁶
Q2 = ?
Thus, let's replace this in the formula for the force:
7.2 = 9.0 × 10⁹ * 4.0 × 10⁻⁶ * Q2/(10⁻¹)²
7.2 = 9 * 4 * 10⁹⁻⁶ * Q2/10⁻¹°²
7.2 = 36 × 10³ * Q2 / 10⁻²
Multiply both sides of the equation by 10⁻²:
7.2 × 10⁻² = 36 × 10³ * Q2
⇒ Q2 = 7.2 × 10⁻² / 36 × 10³ = 7.2/36 × 10⁻²⁻³ = 0.2 × 10⁻⁵ = 2 × 10⁻⁶
Since µC = 1.0 × 10^-6:
Q2 = 2 * 1.0 × 10^-6 = 2 µC
B,a current flows through the wire
Answer:

Explanation:
When an object goes on a circular movement, it has a centripetal acceleration that always points toward the center of the circle, it is the responsible of the change of direction in the movement of the object. and that centripetal acceleration is related with the speed in the next way:
, with v the speed, r the radius of the track that is half of the diameter (22.5 m)

