<span>This problem can be solved by the formula used to find resistance. The formula is R=V/I which basically means divide the Voltage by the Current to find the Resistance in an object. Ohm's law.</span>
Answer:
D) This is the correct answer
Explanation:
In this exercise the two ball loads are suspended by a thread.
To answer this exercise, let us remember that charges of the same sign repel and charges of a different sign attract.
Therefore, for the system to maintain equilibrium, the two charges must be of the same sign.
When examining the different proposals
A) in this case, as a sphere has no charge, there is no electric force and the induced charge is of the opposite sign, so the spheres attract each other
B) in this case there is an electric force, but being of a different sign, the force is attractive so the system is not in equilibrium
C) as the charges are of different magnitude the system does not have equal angles
D) This is the correct answer, since the charges have the same magnitude and are of the same sign, so the force is repulsive and is counteracted by the weight component
F_e = W sin θ
The ratio of the distance moved by the point at which the effort is applied in a simple machine to the distance moved by the point at which the load is applied, in the same time. In the case of an ideal (frictionless and weightless) machine, velocity ratio = mechanical advantage. Velocity ratio is sometimes called distance ratio.
Given :
A box weighing 12,000 N is parked on a 36° slope.
To Find :
What will be the component of the weight parallel to the plane that balances friction.
Solution :
The component of that will be parallel to the plane to balance friction is :

Therefore, component of force to balance friction is F sin 36° .
Hence, this is the required solution.
Direction and Strength can be measured of force