Answer:
The SI unit of intensity is the watt per square meter/metre (W/m^2.)
Explanation:
Intensity is equal to the power transferred per unit area. Since power is measured in watts (W) and 1 W = 1 J/s, then intensity can be viewed as how fast energy goes through a certain area.
In physics, intensity is often used when studying light, sound, or other phenomena that involve waves or energy transfer. (With waves, the power value is taken as the average power transfer over the wave's period.)
This is the photoelectric effect, and it is best explained by the particle model of light.
<h3>What is the photoelectric effect?</h3>
The photoelectric effect refers to the emission of negatively charged particles and electromagnetic radiation that hits an object.
The photoelectric effect shows how electrons can be released from a given object when this material is absorbing electromagnetic radiation.
The photoelectric effect is a fundamental piece of evidence for understanding the nature of light particles.
Learn more about the photoelectric effect here:
brainly.com/question/1359033
Answer:
Person B
Explanation:
Person B will hear the frequency that is lower than the B- flat.
Answer:
I = 24 A
Explanation:
This is Parallel Circuit and it is the first principle of parallel circuit that voltage will be equal in all components in the circuit
It includes 10 resistors Therefore the voltage across,
R1 = R2 = R3 = R4 = R5 = R6 = R7 = R8 = R9 = R10 = voltage in battery
<h2>
Ohm's Law</h2>
We will apply Ohm's Law to each resistor to find its current because we know the voltage across each resistor is 12 V and the resistance of each resistor is 5Ω
I (R1) = E (R1) / R1
I (R1) = 12v / 5Ω
I (R1) = 2.4 A
The value resistance E of all resistors are same therefore by applying the formula above the value of current in all resistors will be 2.4 A
The Total current in the circuit will be
I (total) = I (1) + I (2) + I (3) + I (4) + I (5) + I (6) + I (7) + I (8) + I (9) + I (10)
I (total) = 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4 + 2.4
I (total) = 24 A