Answer:
a) Ep = 5886[J]; b) v = 14[m/s]; c) W = 5886[J]; d) F = 1763.4[N]
Explanation:
a)
The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.
![E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2060%5Bkg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%3D%2010%20%5Bm%5D%5C%5CE_%7Bp%7D%3D60%2A9.81%2A10%5C%5CE_%7Bp%7D%3D5886%5BJ%5D)
b)
Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.
![E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5C5886%20%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B5886%7D%7B0.5%2A60%7D%20%7D%5C%5Cv%20%3D%2014%5Bm%2Fs%5D)
c)
The work is equal to
W = 5886 [J]
d)
We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.
![v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bo%7D%20%5E%7B2%7D-2%2Aa%2Ad%5C%5Cwhere%3A%5C%5Cd%20%3D%202.5%5Bm%5D%5C%5Cv_%7Bf%7D%3D0%5C%5Cv_%7Bo%7D%20%3D14%5Bm%2Fs%5D%5C%5CTherefore%5C%5Ca%20%3D%20%5Cfrac%7B14%5E%7B2%7D%20%7D%7B2%2A2.5%7D%20%5C%5Ca%20%3D%2039.2%5Bm%2Fs%5E2%5D)
By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.
m*g - F = m*a
F = m*a - m*g
F = (60*39.2) - (60*9.81)
F = 1763.4 [N]
Answer:
Is it a sin to like them all...? haha
Answer:
Maybe put them in order ????
Explanation:
Answer:
1) 0.43 meters per second
2) 0.21 meters per second
3) 1.02 
4) 0.66 seconds
Explanation:
part 1
By conservation of energy, the maximum kinetic energy (K) of the block is at equilibrium point where the potential energy is zero. So, at the equilibrium kinetic energy is equal to maximum potential energy (U):


With m the mass, v the speed, k the spring constant and xmax the maximum position respect equilibrium position. Solving for v

part 2
Again by conservation of energy we have kinetic energy equal potential energy:


part 3
Acceleration can be find using Newton's second law:

with F the force, m the mass and a the acceleration, but elastic force is -kx, so:


part 4
The period of an oscillator is the time it takes going from one extreme to the other one, that is going form 4.5 cm to -4.5 cm respect the equilibrium position. That period is:

So between 0 and 4.5 cm we have half a period:
