There are at least two forces on it, and there could be more.
Vertical forces:
-- gravity, directed downward
-- buoyant force, directed upward
These two forces must be exactly equal, so that the net
vertical force on the raft is zero. Otherwise, it would be
accelerating either up or down.
Horizontal forces:
We know that the net horizontal force on the raft is zero.
Otherwise, it would be accelerating horizontally.
But we don't know if there are actually no horizontal forces
at all, or a balanced group of horizontal forces, that add up
to a net force of zero.
You haven't said how much power the stereo uses. It matters !
Whatever that number is, the maximum hours per month is
(3460) divided by (the # of watts the stereo uses when it's playing) .
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
<span>Mitosis is a a means for cells to split and produce exact copies of themselves. The process produces two identical copies of the original cell and occurs throughout the human body. Mitosis is divided up into four main phases known as prophase, metaphase, anaphase and telophase. The chromosomes first become visible in early prophase.</span>
M/s, km/h, and mph are all used to measure these quantities