As the centripetal force<span> acts upon an </span>object moving <span>in a </span>circle<span> at constant speed, the </span>force<span> always acts inward as the velocity of the </span>object<span> is directed tangent to the </span>circle. ... In fact, whenever the unbalanced centripetal force<span> acts perpendicular to the direction of </span>motion<span>, the speed of the </span>object will<span> remain constant.</span>
If a car crashes into another car like this, the wreck should go nowhere. Besides this being an unrealistic question, the physics of it would look like this:
Momentum before and after the collision is conserved.
Momentum before the collision:
p = m * v = 50000kg * 24m/s + 55000kg * 0m/s = 50000kg * 24m/s
Momentum after the collision:
p = m * v = (50000kg + 55000kg) * v
Setting both momenta equal:
50000kg * 24m/s = (50000kg + 55000kg) * v
Solving for the velocity v:
v = 50000kg * 24m/s/(50000kg + 55000kg) = 11,43m/s
Midway between the two<span> solstices we have equinoxes – Vernal Equinox in March and </span>Autumnal Equinox<span> in September. ... After this time, the Earth's northern axis is tilted </span>more<span> and </span>more<span>towards ... Then on </span>Summer Solstice<span>, the Sun will reach its farthest north position in the sky</span>
Answer:
* most of the emission would be in the infrared part, the visible radiation would be very small.
*total intensity of the semition decreases that the intensity depends on the fourth power of the temperature
Explanation:
The radiation emitted by the Sun is approximately the radiation of a black body, if the Sun were to cool, the maximum emission wavelength changes
λ T = 2,898 10⁻³
λ = 2,898 10⁻³ / T
if the temperature decreases the maximum wavelength the greater values are moved, that is to say towards the infrared. Therefore the emission curve also moves, in this case most of the emission would be in the infrared part, the visible radiation would be very small.
Furthermore, the total intensity of the semition decreases that the intensity depends on the fourth power of the temperature according to Stefan's law
P = σ A eT⁴
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J