Answer:
(B) The speed is larger at A than at B.
Explanation:
Point B, the final point of the trajectory, has higher electric potential than point A, the initial point of the trajectory, so the electric potential energy of the charged particle increases, which means that its kinetic energy must be decreasing, thus the speed at B must be lower than the speed at A.
here's the first part but for the 2nd one all I know is that the word "compression" goes on the spirals that are closer together.
hope this helps!
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
here we will use the concept of Newton's III law
as per Newton's III law the impulse given to the ball is same as the impulse lost by the bat
So here we will say
impulse gain by the ball = impulse lost by the bat

given that


For ball the change in speed will be

now from above equation


so speed of bat will decrease by 6.72 mph
Answer:
An electric generator is a device that converts a form of energy into electricity.
Explanation: