F = qE + qV × B
where force F, electric field E, velocity V, and magnetic field B are vectors and the × operator is the vector cross product. If the electron remains undeflected, then F = 0 and E = -V × B
which means that |V| = |E| / |B| and the vectors must have the proper geometrical relationship. I therefore get
|V| = 8.8e3 / 3.7e-3
= 2.4e6 m/sec
Acceleration a = V²/r, where r is the radius of curvature.
a = F/m, where m is the mass of an electron,
so qVB/m = V²/r.
Solving for r yields
r = mV/qB
= 9.11e-31 kg * 2.37e6 m/sec / (1.60e-19 coul * 3.7e-3 T)
= 3.65e-3 m
Answer:
2.1844 m/s
Explanation:
The principle of conservation of momentum can be applied here.
when two objects interact, the total momentum remains the same provided no external forces are acting.
Consider the whole system , gun and bullet. as an isolated system, so the net momentum is constant. In particular before firing the gun, the net momentum is zero. The conservation of momentum,

assume the bullet goes to right side and the gravitational acceleration =10 
so now the weight of the rifle=

this is a negative velocity to the right side. that means the rifle recoils to the left side
Answer:
d = 13 miles
Explanation:
Lets say the position of court house is origin in this case
her office is located at 4 miles west and 4 miles south of court house
so here we have coordinate of the office with respect to court house is given as

now the position of her home is located at 1 miles east and 8 miles north of the court house
so the coordinates of her home is given as

now the change in the position is given as the distance between office and home



The suspended ash made for some some spectacular sunsets! Sulfuric acid was spread worldwide, increasing acidity of rain. Ash deflected energy from the sun, causing a slight drop on global temps for a few years.
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹