One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu). This nucleus is radioactive and decays by splitting into a helium-4 nucleus and a uranium-235 nucleus (4He +... Q: One of the most worrisome waste products of a nuclear reactor is plutonium 239 (239Pu<span>).</span>
Physical change alters a given material without changing its chemical.
Answer:
- There will be 1.23 moles of helium in the balloon at STP
Explanation:
1) <u>Initial conditions of the helium gas</u>:
- V = 20.0 liter
- p = 1.50 atm
- T = 25.0 °C = 25.0 + 273.15 K = 298.15 K
2) <u>Ideal gas equation</u>:
- pV = n RT
- p, V, and T are given above
- R is the Universal constant = 0.0821 atm-liter / ( K - mol)
- n is the unknown number of moles
3) <u>Solve for n</u>:
- n = 1.50 atm × 20.0 liter / (0.0821 atm-liter /k -mol ×298.15K)
4) <u>At STP:</u>
- STP stands for standard pressure and temperature.
- The amount (number of moles) of the gas will not change because the change of pressure and temperature, so the number of moles reamain the same: 1.23 mol.
I think C. Mutualism.
Hope this helps :)
Answer:
0.0890 M
Explanation:
Since the concentration of KCl is irrelevant in this case, the concentration of Na2S2O3 can be determined using a simple dilution equation:
C1V1 = C2V2, where C1 = 0.149 M, V1 = 150 mL, V2 = 250 mL
C2 = 0.149 x 150/250
= 0.089 M
To determine the concentration of S2O32- (aq), consider the equation:

The concentration of Na2S2O3 and S2O32- (aq) is 1:1
Hence, the concentration in molarity of S2O32- (aq) is 0.089 M.
To 3 significant figures = 0.0890 M