The wagon will accelerate at a faster pace. Since the wagon is lighter than the go kart, the same force will have a stronger effect
Explanation:
The given data is as follows.


Now, according to Michaelis-Menten kinetics,
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
where, S = substrate concentration =
M
Now, putting the given values into the above formula as follows.
![V_{o} = V_{max} \times [\frac{S}{(S + Km)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%20V_%7Bmax%7D%20%5Ctimes%20%5B%5Cfrac%7BS%7D%7B%28S%20%2B%20Km%29%7D%5D)
![V_{o} = 6.8 \times 10^{-10} \mu mol/min \times [\frac{10.4 \times 10^{-6} M}{(10.4 \times 10^{-6}M + 5.2 \times 10^{-6} M)}]](https://tex.z-dn.net/?f=V_%7Bo%7D%20%3D%206.8%20%5Ctimes%2010%5E%7B-10%7D%20%5Cmu%20mol%2Fmin%20%5Ctimes%20%5B%5Cfrac%7B10.4%20%5Ctimes%2010%5E%7B-6%7D%20M%7D%7B%2810.4%20%5Ctimes%2010%5E%7B-6%7DM%20%2B%205.2%20%5Ctimes%2010%5E%7B-6%7D%20M%29%7D%5D)

= 
This means that
would approache
.
Since an acidic salt solution is produced when a strong acid neutralizes a weak base, the pH of the salt solution formed when HCl is added to R2NH will be less than 7.
<h3>What is a neutralization reaction?</h3>
A neutralization reaction is the react ion between an acid and a base to form salt and water only.
Neutralization reactions can either produce a neutral solution, an acidic solution or an alkaline solution at equivalence point.
When a strong acid is added to a weak base, the pH of the salt solution formed will be less than 7.
Therefore, the pH of the salt solution formed when HCl is added to R2NH will be less than 7.
Learn more about pH at: brainly.com/question/940314
Answer: (2) decreasing the concentration of HCl(aq) to 0.1 M
Explanation: Rate of a reaction depends on following factors:
1. Size of the solute particles: If the reactant molecules are present in smaller size, surface of particles and decreasing the size increases the surface area of the solute particles. Hence, increasing the rate of a reaction.
2. Reactant concentration: The rate of the reaction is directly proportional to the concentration of reactants.
3. Temperature: Increasing the temperature increases the energy of the molecules and thus more molecules can react to give products and rate increases.
(1) Increasing the initial temperature to 25°C will increase the reaction rate.
(2) Decreasing the concentration of HCl(aq) to 0.1 M will decrease the reaction rate due to lesser concentration.
(3) Using 1.2 g of powdered Mg will increase the reaction rate due to large surface area.
(4) Using 2.4 g of Mg ribbon will increase the reaction rate due to high concentration of reactants.
The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.