Answer:
radiation, then convection
Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
Answer:
Explanation:
F = ma and
We have F, we have m, but in order to solve for v, we need a.
30.0 = 3.00a so
a = 10.0 m/s/s. Plug that in for a in the second equation and solve for v:
so
v = 10.0(3.00) so
v = 30.0 m/s
Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg