Calculate the length of a spaceship as follows:
l = l₀√1 - v²/c²
=(400 m)√1 - (0.75c)2 c²
=264.575m.
The Spaceship Origin Portfolio is an index fund that invests in listed Australian and global equities by market capitalization. Invest in the top 100 Australian and top 100 international companies.
Starships, also known as star cruisers, starships, spacecraft, or simply starships or ships, were vessels designed specifically for interstellar travel between star systems.
For clients in the Spaceship Index portfolio, the situation is a little different. The Spaceship Index portfolio consists of approximately 100 of his ASX-listed companies with the largest market capitalization and approximately 100 global companies with the largest market capitalization.
Learn more about spaceship at
brainly.com/question/28175986
#SPJ4
Answer:
The fraction of kinetic energy lost in the collision in term of the initial energy is 0.49.
Explanation:
As the final and initial velocities are known it is possible then the kinetic energy is possible to calculate for each instant.
By definition, the kinetic energy is:
k = 0.5*mV^2
Expressing the initial and final kinetic energy for cars A and B:


Since the masses are equals:

For the known velocities, the kinetics energies result:




The lost energy in the collision is the difference between the initial and final kinectic energies:


Finally the relation between the lost and the initial kinetic energy:


Well i think it is false caus ebunch of products these day have metals incorparded in the product
The temperature of the gas is 41.3 °C.
Answer:
The temperature of the gas is 41.3 °C.
Explanation:
So on combining the Boyle's and Charles law, we get the ideal law of gas that is PV=nRT. Here P is the pressure, V is the volume, n is the number of moles, R is gas constant and T is the temperature. The SI unit of pressure is atm. So we need to convert 1 Pa to 1 atm, that is 1 Pa = 9.86923×
atm. Thus, 171000 Pa = 1.6876 atm.
We know that the gas constant R = 0.0821 atmLMol–¹K-¹. Then the volume of the gas is given as 50 L and moles are given as 3.27 moles.
Then substituting all the values in ideal gas equation ,we get
1.6876×50=3.27×0.0821×T
Temperature = 
So the temperature is obtained to be 314.3 K. As 0°C = 273 K,
Then 314.3 K = 314.3-273 °C=41.3 °C.
Thus, the temperature is 41.3 °C.
Answer:
When all the electrons are removed from an atom, it becomes something as a positively charged particles also known as alpha particles.
<u>Explanation:
</u>
The bare nucleus which is positively charged help in scattering experiments as it has high penetrating powers. <em>An atom is made up of electrons, protons and neutrons. We need huge energy to separate the electrons from their parent atom, still making it separated brings you a particle with a positive charge and only mass having high penetrating power.
</em>