Answer:
F₁ = 1500 N
F₂ = 750 N
= 500 N
Explanation:
Given :
Power transmission, P = 7.5 kW
= 7.5 x 1000 W
= 7500 W
Belt velocity, V = 10 m/s
F₁ = 2 F₂
Now we know from power transmission equation
P = ( F₁ - F₂ ) x V
7500 = ( F₁ - F₂ ) x 10
750 = F₁ - F₂
750 = 2 F₂ - F₂ ( ∵F₁ = 2 F₂ )
∴F₂ = 750 N
Now F₁ = 2 F₂
F₁ = 2 x F₂
F₁ = 2 x 750
F₁ = 1500 N , this is the maximum force.
Therefore we know,
= 3 x 
where
is centrifugal force
=
/ 3
= 1500 / 3
= 500 N
Answer:
Tech A
Explanation:
The amount of energy required to apply the same force with a 1:1 ratio is divided into 4, so you can apply 4 times as much force than a 1:1 ratio. efficiency and speed come into play here, but assuming the machine powering the gear can run at a unlimited RPM, 4:1 will have more force and a slower output speed than a 2:1 ratio.
Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: 
Initial temperature wall = 
Surface temperature = T
Gas exposed temperature = 
Answer:
can you please ask in English I can't understand this language