1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
3 years ago
12

Water flows at a rate of 0.040 m3 /s in a horizontal pipe whose diameter is reduced from 15 cm to 8 cm by a reducer. If the pres

sure at the centerline is measured to be 480 kPa and 440 kPa before and after the reducer, respectively, determine the irreversible head loss in the reducer. Take the kinetic energy correction factors to be 1.05. Answer: 0.963 m
Engineering
1 answer:
Blababa [14]3 years ago
7 0

Answer:

hL = 0.9627 m

Explanation:

Given

Q = 0.040 m³/s (constant value)

D₁ = 15 cm = 0.15 m  ⇒  R₁ = D₁/2 = 0.15 m/2 = 0.075 m

D₂ = 8 cm = 0.08 m  ⇒  R₂ = D₂/2 = 0.08 m/2 = 0.04 m

P₁ = 480 kPa = 480*10³Pa

P₂ = 440 kPa = 440*10³Pa

α = 1.05

ρ = 1000 Kg/m³

g = 9.81 m/s²

h₁ = h₂

hL = ?  (the irreversible head loss in the reducer)

Using the formula Q = v*A   ⇒  v = Q/A

we can find the velocities v₁ and v₂ as follows

v₁ = Q/A₁ = Q/(π*R₁²) = (0.040 m³/s)/(π*(0.075 m)²) = 2.2635 m/s

v₂ = Q/A₂ = Q/(π*R₂²) = (0.040 m³/s)/(π*(0.04 m)²) = 7.9577 m/s

Then we apply the Bernoulli law (for an incompressible flow)

(P₂/(ρ*g)) + (α*v₂²/(2*g)) + h₂ = (P₁/(ρ*g)) + (α*v₁²/(2*g)) + h₁ - hL

Since h₁ = h₂ we obtain

(P₂/(ρ*g)) + (α*v₂²/(2*g)) = (P₁/(ρ*g)) + (α*v₁²/(2*g)) - hL

⇒  hL = ((P₁-P₂)/(ρ*g)) + (α/(2*g))*(v₁²-v₂²)

⇒  hL = ((480*10³Pa-440*10³Pa)/(1000 Kg/m³*9.81 m/s²)) + (1.05/(2*9.81 m/s²))*((2.2635 m/s)²-(7.9577 m/s)²)

⇒  hL = 0.9627 m

You might be interested in
A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
xxMikexx [17]

Answer:

a) 1253 kJ

b) 714 kJ

c) 946 C

Explanation:

The thermal efficiency is given by this equation

η = L/Q1

Where

η: thermal efficiency

L: useful work

Q1: heat taken from the heat source

Rearranging:

Q1 = L/η

Replacing

Q1 = 539 / 0.43 = 1253 kJ

The first law of thermodynamics states that:

Q = L + ΔU

For a machine working in cycles ΔU is zero between homologous parts of the cycle.

Also we must remember that we count heat entering the system as positiv and heat leaving as negative.

We split the heat on the part that enters and the part that leaves.

Q1 + Q2 = L + 0

Q2 = L - Q1

Q2 = 539 - 1253 = -714 kJ

TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:

η = 1 - T2/T1

T2/T1 = 1 - η

T2 = (1 - η) * T1

The temperatures must be given in absolute scale (1453 C = 1180 K)

T2 = (1 - 0.43) * 1180 = 673 K

673 K = 946 C

8 0
3 years ago
Discuss the difference between the observed and calculated values. Is this error? If yes, what is the source?
Scrat [10]

Answer and Explanation:

In any experiment, the observed values are the actual values obtained in any experiment.

The calculated values are the values that are measured by using the observed values in a formula.

The observed values are primary values whereas the calculated values are the secondary values as calaculations are made using observed values.

Yes, if the observed values are of low accuracy.

The values should be recorded with proper care and attention in order to avoid any error.

8 0
3 years ago
Air enters the 1 m² inlet of an aircraft engine at 100 kPa and 20° C with a velocity of 180 m/s. Determine: a) The volumetric fl
Shkiper50 [21]

Answer:

a) 180 m³/s

b) 213.4 kg/s

Explanation:

A_1 = 1 m²

P_1 = 100 kPa

V_1 = 180 m/s

Flow rate

Q=A_1V_1\\\Rightarrow Q=1\times 180\\\Rightarrow Q=180\ m^3/s

Volumetric flow rate = 180 m³/s

Mass flow rate

\dot{m}=\rho Q\\\Rightarrow \dot m=\frac{P_1}{RT} Q\\\Rightarrow \dot m=\frac{100000}{287\times 293.15}\times 180\\\Rightarrow \dotm=213.94\ kg/s

Mass flow rate = 213.4 kg/s

3 0
4 years ago
There are 10 vehicles in a queue when an attendant opens a toll booth. Vehicles arrive at the booth at a rate of 4 per minute. T
dmitriy555 [2]

Answer:

as slated in your solution, if delay time is 2.30 mins, hence 9 vehicle will be on queue as the improved service commenced.

Explanation:

4 vehicle per min, in 2 mins of the delay time 8 vehicles while in 0.3 min average of 1 vehicle join the queue. making 9 vehicle maximum

3 0
3 years ago
An air-conditioner with refrigerant-134a as the working fluid is used to keep a room at 23°C by rejecting the waste heat to the
Kryger [21]

Answer:

(a) 3.455

(b) 21.143

(c) 16.36L/min

Explanation:

In this question, we’d be providing solution to the working process of a refrigerator given the data in the question.

Please check attachment for complete solution and step by step explanation

7 0
3 years ago
Other questions:
  • A 5 MW gas turbine power plant is reported to have a thermodynamic efficiency of 35%. Assume products of the combustion reaction
    5·1 answer
  • A student is using a 12.9 ft ramp to raise an object 6 ft above the ground.
    5·1 answer
  • Consider a rectangular fin that is used to cool a motorcycle engine. The fin is 0.15m long and at a temperature of 250C, while t
    5·1 answer
  • A rectangular open channel is 20 ft wide and has a bed slope of 0.007. Manning's roughness coefficient n is 0.03. It is in unifo
    10·1 answer
  • A 280 km long pipeline connects two pumping stations. It is desired to pump 0.56 m3/s of oil through a 0.62 m diameter line, the
    14·1 answer
  • WHICH TASK BEST FITS THE ROLE OF A DESIGN ENGINEER ?
    7·1 answer
  • Are there engineering students here?​
    5·2 answers
  • I want to solve the question
    11·1 answer
  • EverFi future smart pie chart
    11·1 answer
  • Which emission is created by the heat in the combustion process?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!