D. potential energy, because there is a bunch of water pent up, essentially stationary, waiting to roll down the steep mountain from the peak, so to say. if the dam were to be removed it would become kinetic.
Answer:
76.74 Hz
Explanation:
Given:
Wave velocity ( v ) = 330 m / sec
wavelength ( λ ) = 4.3 m
We have to calculate Frequency ( f ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > f = v / λ
Putting values here we get:
= > f = 330 / 4.3 Hz
= > f = 3300 / 43 Hz
= > f = 76.74 Hz
Hence, frequency of sound is 76.74 Hz.
✯Hello✯
↪ A satellite was crashed into a comet (on purpose of course)
↪ When it crashed a huge amount of water gushed out
↪ It was over hundreds of thousands of litres
↪ These proved that most of the water came from Comets for the world's first oceans
❤Gianna❤
If your machine has a mechanical advantage of 2.5, then WHATEVER force you apply to the input, the force at the output will be 2.5 times as great.
If you apply 1 newton to the machine's input, the output force is
(2.5 x 1 newton) = 2.5 newtons.
If you apply 120 newtons to the machine's input, the output force is
(2.5 x 120 newtons) = 300 newtons.
8500 Hz and Longitudinal
Speed = frequency x wavelength
Speed of sound at 20 degrees Celsius is approximately 340 m/s